Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4161, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24946715

RESUMO

The energetics of metal/molecular semiconductor interfaces plays a fundamental role in organic electronics, determining the performance of very diverse devices. So far, information about the energy level alignment has been most commonly gained by spectroscopy techniques that typically require experimental conditions far from the real device operation. Here we demonstrate that a simple three-terminal device allows the acquisition of spectroscopic information about the metal/molecule energy alignment in real operative condition. As a proof of principle, we employ the proposed device to measure the energy barrier height between different clean metals and C60 molecules and we recover typical results from photoemission spectroscopy. The device is designed to inject a hot electron current directly into the molecular level devoted to charge transport, disentangling the contributions of both the interface and the bulk to the device total resistance, with important implications for spintronics and low-temperature physics.

2.
Science ; 344(6190): 1369-73, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24855026

RESUMO

Graphene plasmons promise unique possibilities for controlling light in nanoscale devices and for merging optics with electronics. We developed a versatile platform technology based on resonant optical antennas and conductivity patterns for launching and control of propagating graphene plasmons, an essential step for the development of graphene plasmonic circuits. We launched and focused infrared graphene plasmons with geometrically tailored antennas and observed how they refracted when passing through a two-dimensional conductivity pattern, here a prism-shaped bilayer. To that end, we directly mapped the graphene plasmon wavefronts by means of an imaging method that will be useful in testing future design concepts for nanoscale graphene plasmonic circuits and devices.

3.
Phys Rev Lett ; 110(20): 203902, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167410

RESUMO

Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.

4.
Nat Commun ; 3: 684, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22353715

RESUMO

Light scattering at nanoparticles and molecules can be dramatically enhanced in the 'hot spots' of optical antennas, where the incident light is highly concentrated. Although this effect is widely applied in surface-enhanced optical sensing, spectroscopy and microscopy, the underlying electromagnetic mechanism of the signal enhancement is challenging to trace experimentally. Here we study elastically scattered light from an individual object located in the well-defined hot spot of single antennas, as a new approach to resolve the role of the antenna in the scattering process. We provide experimental evidence that the intensity elastically scattered off the object scales with the fourth power of the local field enhancement provided by the antenna, and that the underlying electromagnetic mechanism is identical to the one commonly accepted in surface-enhanced Raman scattering. We also measure the phase shift of the scattered light, which provides a novel and unambiguous fingerprint of surface-enhanced light scattering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...